国产精品乱码一区-性开放网站-少妇又紧又爽视频-西西大胆午夜人体视频-国产极品一区-欧美成人tv-四虎av在线-国产无遮挡无码视频免费软件-中文字幕亚洲乱码熟女一区二区-日产精品一区二区三区在线观看-亚洲国产亚综合在线区-五月婷婷综合色-亚洲日本视频在线观看-97精品人人妻人人-久久久久久一区二区三区四区别墅-www.免费av-波多野结衣绝顶大高潮-日本在线a一区视频高清视频-强美女免费网站在线视频-亚洲永久免费

機(jī)械社區(qū)

標(biāo)題: 英文全書下載 Viscoelastic Materials. Roderic Lakes 2009 《粘彈性材料》 [打印本頁]

作者: 陳小黑    時(shí)間: 2015-1-9 22:34
標(biāo)題: 英文全書下載 Viscoelastic Materials. Roderic Lakes 2009 《粘彈性材料》
本帖最后由 陳小黑 于 2015-1-9 22:37 編輯
+ c# A8 H8 U: ]$ ~( w
4 O9 O: |  ], h8 ~! Q& u (, 下載次數(shù): 6) % ^( n! h4 l5 Q: ^% [) Y3 l
8 @8 c9 G" N. q4 N( @
(, 下載次數(shù): 6)
' J6 l& Y( J0 x( u4 [7 @9 i  a( z$ T' {9 f( B- C* w# G
目錄! j3 z, v, B8 J$ H& b2 J) i

4 }/ ~/ D! u- S6 e7 z5 O6 l0 \, HContents+ K9 [7 T% t3 x9 X! G& i

/ K' K0 v  ^6 K6 l( M6 T, WPreface page xvii, [; M/ t6 @8 ^) S- X+ Y
1 Introduction: Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
( t/ w1 S2 q1 g- x: a. j  y3 i9 S1.1 Viscoelastic Phenomena 1* H6 n; K3 H" B. h
1.2 Motivations for Studying Viscoelasticity 3
) S  U  s  w; q1.3 Transient Properties: Creep and Relaxation 3: h% Q8 H4 q1 e* E
1.3.1 Viscoelastic Functions J (t), E(t) 37 K( b; |% G% N% d( z
1.3.2 Solids and Liquids 7+ w' h* {# D& ^# t+ U  w' R
1.4 Dynamic Response to Sinusoidal Load: E∗, tanδ 8
" D) o! G4 V5 p# K" V4 Y  h1.5 Demonstration of Viscoelastic Behavior 10" c* J1 S# t3 y0 q0 i' W2 o" [- {
1.6 Historical Aspects 10% q3 S8 q7 r& Y* s
1.7 Summary 11, c/ P) Q0 T' R# x" j# Y
1.8 Examples 119 R8 f+ O" w* _
1.9 Problems 12
2 m  z$ o0 h! z  T3 IBibliography 122 o; T' ?: @  y9 r7 l4 ]

! E) Y+ m5 S5 W1 \, a. u9 o' ]" B# b- G1 S7 W$ {/ P% F
  |' r9 ?" y8 h" W* Y

% A! e' N7 l$ e$ O) C, p; X+ ^+ M+ ?* l9 X9 N8 M5 z5 G3 k* h
) m' y: a* j$ }
2 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7 q0 Q$ L0 }: f. _+ J+ y! [) b2.1 Introduction 14
4 s& _# i3 L4 f3 Y. @2.2 Prediction of the Response of Linearly Viscoelastic Materials 14- |, t+ v" p% k/ N" C0 |8 C
2.2.1 Prediction of Recovery from Relaxation E(t) 14+ C# F/ \9 w1 h8 ?+ w8 U$ J! ?; K
2.2.2 Prediction of Response to Arbitrary Strain History 15
, {$ a/ K, v; Q) Q2.3 Restrictions on the Viscoelastic Functions 17
4 E6 L8 y0 U5 I0 T2 |  s2.3.1 Roles of Energy and Passivity 17
- _* E$ n! D8 h. l4 B) N4 \5 ^2.3.2 Fading Memory 18: c% E3 E" f' X) h8 ^% c8 i  {" _/ M
2.4 Relation between Creep and Relaxation 19
6 ]/ E& @; C! X* V7 ]% i8 s2.4.1 Analysis by Laplace Transforms: J (t) ↔ E(t) 19
$ \8 |; r/ z0 d8 z) ?9 ^2.4.2 Analysis by Direct Construction: J (t) ↔ E(t) 20
; {8 q7 D, {1 z2.5 Stress versus Strain for Constant Strain Rate 20
, [4 q0 u5 Q+ ?1 L( M; a' U6 Q" Z2.6 Particular Creep and Relaxation Functions 21
. J) G  U, j* {3 G2.6.1 Exponentials and Mechanical Models 21  ~  d/ [  G( X6 _2 W
2.6.2 Exponentials and Internal Causal Variables 26, D7 o" H! a  C, G6 G- i; q8 X
2.6.3 Fractional Derivatives 27
* Y6 r9 K# q4 w, V8 N2 y2.6.4 Power-Law Behavior 28# D1 _" I, S: a' P  j8 l6 |; E
2.6.5 Stretched Exponential 29
% c/ a4 y9 Z& C- S2.6.6 Logarithmic Creep; Kuhn Model 299 L0 V  B6 u$ b0 D- I2 Z* s
2.6.7 Distinguishing among Viscoelastic Functions 300 o" `* Z8 t+ ?
2.7 Effect of Temperature 30
% a4 f; R+ k% a( L# B' e/ ~' H2.8 Three-Dimensional Linear Constitutive Equation 33' x2 v% l" A! V8 o3 @. \$ x2 S
2.9 Aging Materials 35; U  _9 D# K& ?$ ^% E$ ]) c1 Q
2.10 Dielectric and Other Forms of Relaxation 350 f- {, T. {6 Y( _+ p9 D8 L2 U9 K$ u
2.11 Adaptive and “Smart” Materials 36
# m7 p$ D. \& \2 ]$ Y" O2.12 Effect of Nonlinearity 37
* Y* V; f: f' N$ ^- K6 y- H2 l2.12.1 Constitutive Equations 37& f$ r" O0 v! y8 v9 w# L
2.12.2 Creep–Relaxation Interrelation: Nonlinear 40
" k4 l& ^: Z5 _) e0 s2.13 Summary 43
4 Q0 g- P- Z2 _7 a- t- Z# _: h2.14 Examples 43
6 c1 o3 v% `" t: N: Q" ], u2.15 Problems 51
' N! x, {7 b5 U- L. lBibliography 52
' |- S% t0 n  n  H; {' x9 e9 }$ ^$ n6 S) x
) o' x+ e( W) T1 q5 T
( {* K* A. B, y% A
( S; b+ }0 D  N  [1 b
3 Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55( s* [8 _! q. P. D* x+ ?
3.1 Introduction and Rationale 55
' {5 M( J) L3 V3.2 The Linear Dynamic Response Functions E∗, tanδ 56
3 y2 m# J( }3 L3.2.1 Response to Sinusoidal Input 57: @2 T/ q  A+ h$ g8 G& W
3.2.2 Dynamic Stress–Strain Relation 59: D$ ?2 [- {2 g
3.2.3 Standard Linear Solid 62
9 u/ c. M* c& ^1 g3.3 Kramers–Kronig Relations 638 E8 k, F6 K" [+ z& Y1 d1 ^8 z/ K
3.4 Energy Storage and Dissipation 65/ W- R: y. p' {! k6 s' G. Y. s
3.5 Resonance of Structural Members 678 C' b: ~2 _* `/ L0 K# e
3.5.1 Resonance, Lumped System 67  v$ \5 w' n3 S
3.5.2 Resonance, Distributed System 71" d8 u: R  `2 Z: Y
3.6 Decay of Resonant Vibration 74
5 v( G9 ]. Y/ X3 ~3.7 Wave Propagation and Attenuation 77
; r4 F2 D& d' H6 P8 C) l8 ~3.8 Measures of Damping 79
9 U) v# a2 _( }( t( u# f9 p4 S3.9 Nonlinear Materials 795 U9 Z8 P) ~  P; c: `: d
3.10 Summary 81  w" g  h+ m0 w  S
3.11 Examples 81
" z/ e4 y6 d9 Q; {+ A! V1 R# e3.12 Problems 88
7 K* w4 x+ G/ M) dBibliography 895 M6 w4 m+ U& J1 I1 }7 ~2 j! G
. O. T( i" B& I* \2 Z' t# R1 c! D
. h- [" S( a' h" b7 j# m  Z2 p  d

3 Q6 w3 w) {$ X7 ^/ `2 c4 Conceptual Structure of Linear Viscoelasticity . . . . . . . . . . . . . . . 91% J; d1 N! `) {* g6 Z
4.1 Introduction 91
9 W- {8 Y# o$ D* w" G+ o7 i& m8 Q4.2 Spectra in Linear Viscoelasticity 92
0 V; U# o. n, l3 J( y4 _4.2.1 Definitions H(τ ), L(τ ) and Exact Interrelations 925 j; k5 C' H8 R3 y6 Y. ?) j
4.2.2 Particular Spectra 937 E: s/ Y0 q" `3 q2 ]& W, a$ v
4.3 Approximate Interrelations of Viscoelastic Functions 95- Z8 r; i8 t. Q" R3 d
4.3.1 Interrelations Involving the Spectra 95
8 h  n1 @0 x' }6 O! w, R4 A9 F2 k4.3.2 Interrelations Involving Measurable Functions 98( F) ~2 s  K  F$ f
4.3.3 Summary, Approximate Relations 101
; ~  B3 P! N2 K, U4.4 Conceptual Organization of the Viscoelastic Functions 101- t2 E' X6 L" M  U
4.5 Summary 104
. L3 L- Y9 ]0 m: p$ l4.6 Examples 104
+ Y7 B7 e! j. w4.7 Problems 109
" `* j. I3 `3 P3 a. w) v2 x* `Bibliography 1096 o5 `2 h( x7 E, Z9 E6 R8 R8 V
: D2 }) w' @: c3 Y" z

8 a7 @3 A2 \& b! Q  t2 @; W; ?) t  c) j/ R* l3 z& M
5 Viscoelastic Stress and Deformation Analysis . . . . . . . . . . . . . . . 111/ N  u" D- T# X
5.1 Introduction 111- r9 d' \& \- ?4 x8 i1 A9 n
5.2 Three-Dimensional Constitutive Equation 111# @2 S4 }7 c+ Q
5.3 Pure Bending by Direct Construction 112
: Z4 C0 j4 V; y' h- Q% n) z5.4 Correspondence Principle 114
1 R$ [/ ~, e" n) O2 Q! I/ P% U5.5 Pure Bending by Correspondence 1162 d, A- \0 l- \! w: X
5.6 Correspondence Principle in Three Dimensions 116: I/ d2 l( r8 x( l' ]! o
5.6.1 Constitutive Equations 116! z. c2 A9 W) O3 |+ U( G4 y
5.6.2 Rigid Indenter on a Semi-Infinite Solid 117" c3 |/ u( b# ]6 U
5.6.3 Viscoelastic Rod Held at Constant Extension 119
7 ?7 F2 N7 u6 y0 k! @3 @0 L5.6.4 Stress Concentration 119
4 j. d4 J# h0 p' r5.6.5 Saint Venant’s Principle 120$ g0 P% d0 k% _8 D8 s
5.7 Poisson’s Ratio ν(t) 121
$ I2 b" }+ I; s* p" v, J+ L5.7.1 Relaxation in Tension 121
3 A- k0 r" O: R( d4 u: ^$ G) `7 o5.7.2 Creep in Tension 123
1 {& X3 `( x: S& O0 ~5 \, \5.8 Dynamic Problems: Effects of Inertia 124; E+ C7 P- \  z0 [
5.8.1 Longitudinal Vibration and Waves in a Rod 124
+ c% Q3 r  @0 h5.8.2 Torsional Waves and Vibration in a Rod 125
0 ^1 Y3 S6 Z2 O% V* t' l1 F5.8.3 Bending Waves and Vibration 128$ a, v/ X) x) |9 g
5.8.4 Waves in Three Dimensions 129& `. j) J+ `: y7 u1 ^$ a
5.9 Noncorrespondence Problems 131
3 Q1 {' [& o8 \* o& E" g5.9.1 Solution by Direct Construction: Example 131
; w6 P# B. w; J+ ?# G* m! r) I5.9.2 A Generalized Correspondence Principle 1327 S3 W! U" D1 Z( i4 @% q" p& C0 k
5.9.3 Contact Problems 1327 o7 {) c# x! n( P. [0 G0 I- v  g  w
5.10 Bending in Nonlinear Viscoelasticity 133* s, L& `  `" {, E
5.11 Summary 134& U( U0 ^8 v# g- \0 j3 ~+ i1 f
5.12 Examples 1341 @, Z* x, R& O" l/ _0 Y% N9 p
5.13 Problems 142
% ^1 |9 P# p! k5 R/ _) `Bibliography 1425 U2 m' H. g. G/ e3 ?5 a& h' V/ C

5 c5 a& ?! F0 a) ?, E. _
$ v  ]# m& d) Q" a2 @* f
  B7 w4 n2 y) l2 T$ Q: \3 n; t6 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145) O6 B, U" T0 [$ h  h" z
6.1 Introduction and General Requirements 145
/ v' a5 o5 G# s& b/ x8 E* X' E6.2 Creep 1460 M* R! Q& M* E- ^. p
6.2.1 Creep: Simple Methods to Obtain J (t) 146) M6 |. o3 i7 N* B6 k; o0 }
6.2.2 Effect of Risetime in Transient Tests 146
) L4 k& h, ~8 m5 ?- b0 W9 I: D8 a& r6.2.3 Creep in Anisotropic Media 1481 d/ M( m( C8 P1 z- U' @
6.2.4 Creep in Nonlinear Media 1489 Z: E- K" Z: g/ B7 B# f
6.3 Inference of Moduli 1501 U, _7 ^% V7 u
6.3.1 Use of Analytical Solutions 150
* {9 \5 X2 ^/ q- J$ |6.3.2 Compression of a Block 151
- K. @$ T6 ^0 Y6.4 Displacement and Strain Measurement 152
2 q0 f3 ]9 U7 j# A8 r+ j3 C6.5 Force Measurement 156# t& M  F$ r% Y8 e8 z0 {2 }) D3 F
6.6 Load Application 157
! i9 `0 H/ C5 s6.7 Environmental Control 157
& y  f7 \: @4 O  K! g! j6.8 Subresonant Dynamic Methods 158
) M% X1 ?/ v% i2 W4 r7 U5 U6.8.1 Phase Determination 158& l/ j4 W# _2 A2 U' b; N0 W# }
6.8.2 Nonlinear Materials 160
" @, r0 D; B1 ^/ r6.8.3 Rebound Test 1613 r$ s8 Z$ R; T8 S8 j7 a0 T
6.9 Resonance Methods 161
0 L7 A7 t8 U" b5 s) h5 [6.9.1 General Principles 161' M) L- W0 H- M" ~: \- K. h
6.9.2 Particular Resonance Methods 163
$ P1 R8 e; [! Y! U: u' g, j( @6.9.3 Methods for Low-Loss or High-Loss Materials 166
! Q' i! Z# l( p8 C2 L) H) X& g6.9.4 Resonant Ultrasound Spectroscopy 168, @7 |$ K- ^, q) m5 m
6.10 Achieving a Wide Range of Time or Frequency 171
' i3 T- b3 D, j$ m6.10.1 Rationale 171
. c% S0 \$ }9 g0 h" `( n6.10.2 Multiple Instruments and Long Creep 172/ `3 J5 r7 X, x5 w. }% S4 T! ^
6.10.3 Time–Temperature Superposition 172
: \! t) g" [: m: K1 E6.11 Test Instruments for Viscoelasticity 1730 I2 u8 q7 |% O1 w3 @; @/ D
6.11.1 Servohydraulic Test Machines 173
) b- P# w: I, B- W+ \6.11.2A Relaxation Instrument 1747 K9 |8 ?! q3 f: ?8 J: X' C
6.11.3 Driven Torsion Pendulum Devices 174
  z/ H! B+ M5 E* \* `6.11.4 Commercial Viscoelastic Instrumentation 178
5 {! S; w1 |# L: y; Q6.11.5 Instruments for a Wide Range of Time and Frequency 179
& ]# T  ~8 R9 N  E" |9 F  C3 J. c( X. g6.11.6 Fluctuation–Dissipation Relation 182, v7 W) |- C" J! J0 m5 ]
6.11.7 Mapping Properties by Indentation 183
3 t0 Q- Y5 P8 f" d9 t  x6.12 Wave Methods 184$ @# A: ^* e2 _
6.13 Summary 188# h9 Z% J* Z" G# |
6.14 Examples 188+ g* ]0 J/ c# l$ i# O1 e
6.15 Problems 200
% o& h, ?9 t& J! {" _2 MBibliography 201
- H! x$ K# f6 {( e, T/ S$ _& L5 }: e
8 {0 H/ p( N0 D% g  S$ k+ x

7 K' F+ I3 Z! \7 n' u; X& L- E7 Viscoelastic Properties of Materials . . . . . . . . . . . . . . . . . . . . . 207; g  ~2 a4 V" W7 i1 c" Y# ^
7.1 Introduction 207
$ y$ i' F9 h1 v( T- h- Z; n7.1.1 Rationale 207
! i5 Q) B. Q1 D7.1.2 Overview: Some Common Materials 207
- \4 M0 D* l1 Y7.2 Polymers 208
* G& S9 }# e) n5 ^. X7.2.1 Shear and Extension in Amorphous Polymers 208
' M, H, I. X3 m2 _  _2 ]7.2.2 Bulk Relaxation in Amorphous Polymers 212
! l4 v# L5 `: R- }# |. M9 s; E4 P7.2.3 Crystalline Polymers 213
: i5 h! c$ V8 `, |+ y* n2 r4 l6 N7.2.4 Aging and other Relaxations 214
0 K3 e/ k- v/ V# u6 ^7.2.5 Piezoelectric Polymers 214
% T% Z( c8 Y" o2 K3 N7.2.6 Asphalt 214
- i( h+ m0 q& A$ w" W9 L2 P7.3 Metals 215
& Z+ I( g; t  W5 B9 }" W4 ]7.3.1 Linear Regime of Metals 215+ p( G& Y- g. Y2 l6 P! h
7.3.2 Nonlinear Regime of Metals 217! G2 c7 L, X& ?: ~: I
7.3.3 High-Damping Metals and Alloys 219
4 g! k9 ]# g! q4 N7.3.4 Creep-Resistant Alloys 224; G+ E2 P, K( V$ b* F+ `
7.3.5 Semiconductors and Amorphous Elements 225' x1 T( n2 b) d) G2 U/ x
7.3.6 Semiconductors and Acoustic Amplification 226
4 y$ W! W: g+ t; F7.3.7 Nanoscale Properties 2263 }& M" o8 L9 Q; a  i" {
7.4 Ceramics 227
. ?2 d8 _# J5 t8 {2 m, }$ e7.4.1 Rocks 227' k. F) o3 s/ s1 e5 W" H: l# J
7.4.2 Concrete 229
, u7 L  @, d9 k% l0 i7.4.3 Inorganic Glassy Materials 231
! X1 {. H, T4 w7.4.4 Ice 231
, ^1 ^* t4 Y- `+ A7.4.5 Piezoelectric Ceramics 232
: `  V, y) G0 B3 e7.5 Biological Composite Materials 2331 E, F2 @3 O9 h5 \. Q7 [6 b
7.5.1 Constitutive Equations 2341 Y" ^7 @# R7 ^1 s4 t) |! Z
7.5.2 Hard Tissue: Bone 234
" V4 u( x& Z5 T7.5.3 Collagen, Elastin, Proteoglycans 236; e7 [5 i% W: L3 Z& ^- w9 C- t
7.5.4 Ligament and Tendon 237
& L: G" Y, e# {$ `' V9 E7.5.5 Muscle 240/ b$ t# A9 T  Q1 Z' l0 h4 w* ]
7.5.6 Fat 243# |* ?: P" ?& I! B, Q4 `  V
7.5.7 Brain 243
8 q- `% H% F- P9 P7.5.8 Vocal Folds 244; y" T" c8 q" o. O( D5 W
7.5.9 Cartilage and Joints 244
- {0 i$ q+ W6 O& U) ~7.5.10 Kidney and Liver 246  b- f- ]- N9 w& B$ V5 c
7.5.11 Uterus and Cervix 246
. J& P7 ~& W% I0 \8 J6 |. N! z7.5.12 Arteries 247
* M- c, ~& `' d( \# O7.5.13 Lung 2486 Z: a6 v! M" C! z' x
7.5.14 The Ear 248
& K7 F' f* }5 t, w+ h# Y7.5.15 The Eye 2490 C* [  Z! w6 `  Q- l/ T: x% U4 T
7.5.16 Tissue Comparison 251  l1 X' S- p+ e2 t0 o& V
7.5.17 Plant Seeds 2520 `4 X8 a. E( j, X7 K8 k9 C# E. q
7.5.18 Wood 252
$ ^; e) J. s. f' j7.5.19 Soft Plant Tissue: Apple, Potato 253# N5 [  [4 K0 H4 c6 F" z* F
7.6 Common Aspects 253
; n, K" r& e/ O+ |, D2 q! N7.6.1 Temperature Dependence 253
1 G8 j5 O, S4 F6 u; _7.6.2 High-Temperature Background 254) B) J' ~8 t' n; N' V- z& _4 D- [
7.6.3 Negative Damping and Acoustic Emission 255
: g; B9 [' b. E, f& V8 t; B" F7.7 Summary 2551 e; Q$ J+ ~# V6 H3 u
7.8 Examples 255+ k+ j% g/ ?( p* i2 Y/ }' Y
7.9 Problems 256
( J. L7 i& J( O) v: j) C! S, D/ bBibliography 2576 A+ b7 Z; u7 ~9 B7 ^

( ^3 ~6 w# A/ Q$ b* \& _# E+ j3 m, r, d1 s" o

. e" L& `& U8 ?2 W3 H6 I  c8 Causal Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271' [9 A5 _8 [$ j. L7 C' s7 ~
8.1 Introduction 271
. w3 }3 L" r! S. J0 X% q# H8.1.1 Rationale 271
* h: b" B* O: b! B" R/ {8 \4 z8.1.2 Survey of Viscoelastic Mechanisms 2716 @$ |8 p9 g7 c, H7 Q
8.1.3 Coupled Fields 273
# L% R3 v. X. j* r7 R) {8.2 Thermoelastic Relaxation 274
5 h% C2 d# \! o* ?0 h/ F8 Z8.2.1 Thermoelasticity in One Dimension 274+ t1 }4 s# U+ M& ^# z, T
8.2.2 Thermoelasticity in Three Dimensions 275: M, g. W6 u" U1 [/ c7 }
8.2.3 Thermoelastic Relaxation Kinetics 276
* W) E0 Q& M2 l6 w% {/ Y8.2.4 Heterogeneity and Thermoelastic Damping 278
& t& [2 R4 M! p& L' ~8.2.5 Material Properties and Thermoelastic Damping 2802 W6 u9 V: r3 m) n9 \. q
8.3 Relaxation by Stress-Induced Fluid Motion 2803 b; y; s+ U; s) j0 ?+ a
8.3.1 Fluid Motion in One Dimension 280, l1 L3 i1 U8 v' p- O. Z
8.3.2 Biot Theory: Fluid Motion in Three Dimensions 2814 I& g6 b  U  o& `# N& ^2 k
8.4 Relaxation by Molecular Rearrangement 286
- z6 ^8 M3 }& ~8.4.1 Glassy Region 286
* v" z7 _# ^0 U5 e8.4.2 Transition Region 287/ n* h8 D' b8 \
8.4.3 Rubbery Behavior 289/ C/ b: g& _' }4 q$ U
8.4.4 Crystalline Polymers 291
9 b4 R% N" L+ W! G3 `, T8.4.5 Biological Macromolecules 292
5 r5 x% n& e) r7 o% B5 s8.4.6 Polymers and Metals 292
, x4 q( v) W0 J5 H1 Z* M* v' Z8.5 Relaxation by Interface Motion 292$ q3 M1 Z/ r9 J) `( X8 H4 b4 S
8.5.1 Grain Boundary Slip in Metals 2920 a& Z$ Y- H6 c1 {' Z
8.5.2 Interface Motion in Composites 294
! k% n5 @4 i6 o9 B" y1 U8.5.3 Structural Interface Motion 2944 P( p8 u- c" ]
8.6 Relaxation Processes in Crystalline Materials 294
0 l' r0 M8 }  B) M0 s9 A8.6.1 Snoek Relaxation: Interstitial Atoms 294
, E1 j6 Z) |& d8.6.2 Zener Relaxation in Alloys: Pairs of Atoms 2989 B, h, @7 z# s" }$ ^
8.6.3 Gorsky Relaxation 299/ ^/ E: ]% I# N( @
8.6.4 Granato–L ¨ ucke Relaxation: Dislocations 300* T) f! `/ a4 J$ @1 P' X4 v! D% I4 q
8.6.5 Bordoni Relaxation: Dislocation Kinks 303
, M2 j4 Z* ^, T0 k8.6.6 Relaxation Due to Phase Transformations 305
; e& z: |- Y3 H: s8.6.7 High-Temperature Background 314
8 g5 h3 B) ~! v# B; a' a$ D+ B1 h8.6.8 Nonremovable Relaxations 315
0 r5 H, \+ D# X, v8.6.9 Damping Due to Wave Scattering 316
; L- U  {- C. i7 `) J8.7 Magnetic and Piezoelectric Materials 316/ j9 R# l) j. r7 j" @/ Z1 \
8.7.1 Relaxation in Magnetic Media 316
9 \1 x/ F  n9 ]- x8.7.2 Relaxation in Piezoelectric Materials 318
$ |: S* x" z4 x1 ~8.8 Nonexponential Relaxation 322% |1 j! i4 h" k% i3 q( T
8.9 Concepts for Material Design 3231 v2 m" ^, B' m! e3 i- C
8.9.1 Multiple Causes: Deformation Mechanism Maps 323
, |9 ~* a7 ~  d6 ~. {, P8.9.2 Damping Mechanisms in High-Loss Alloys 326& |) f% J8 Q( R) u' U: f
8.9.3 Creep Mechanisms in Creep-Resistant Alloys 326
- g# p+ p7 _+ L; b- e9 t# x* S8.10 Relaxation at Very Long Times 3271 S, N" k0 Y" r
8.11 Summary 327
9 F3 V0 Y- L, B: ~, z! l4 p9 E" Z$ [8.12 Examples 328! C2 T: t. }1 q8 K* k! S1 w
8.13 Problems and Questions 3329 `1 l5 h1 @& e7 T2 p. d8 ^$ _
Bibliography 332' `0 z# ?7 q- B* h0 q/ P

) ]7 G( o$ b8 i% I* m# X
) [3 b% r7 f: o6 S& v. _0 m3 m: B) }2 R3 k
9 Viscoelastic Composite Materials . . . . . . . . . . . . . . . . . . . . . . . 3412 q# k. S( f* Y" M: M2 N
9.1 Introduction 3412 q4 h" T! \& `( [2 f
9.2 Composite Structures and Properties 341# X  {& [2 O! Q' G0 }/ y6 E6 g, e
9.2.1 Ideal Structures 341
# Y' a% D! U: E6 ~9.2.2 Anisotropy due to Structure 342) J# p/ h* p9 P. [% o# d1 [
9.3 Prediction of Elastic and Viscoelastic Properties 3443 @( r# k. F9 Y' i6 k
9.3.1 Basic Structures: Correspondence Solutions 344
+ D9 W8 z' I; j# b9.3.2 Voigt Composite 345
5 n/ K4 n8 d$ \9.3.3 Reuss Composite 345* h& O* T$ N1 a* j" O0 X! d
9.3.4 Hashin–Shtrikman Composite 346% m0 s. o- |' o. f9 {
9.3.5 Spherical Particulate Inclusions 347. [8 ]  V$ _3 n% n4 |2 `8 S
9.3.6 Fiber Inclusions 349
; W7 S" h0 d+ ^9.3.7 Platelet Inclusions 349
: f" G' H$ h" a8 h/ N- s; p9.3.8 Stiffness-Loss Maps 3507 s, |4 B+ H& z' Z+ ]) u
9.4 Bounds on the Viscoelastic Properties 353
# ^" Z( m7 F! y  l4 n/ i) k( |9.5 Extremal Composites 354& h* L% N$ o9 Q- I# X9 e
9.6 Biological Composite Materials 356
! H" y5 I$ {: B- d9.7 Poisson’s Ratio of Viscoelastic Composites 357
# A! V  c+ q+ n; D9.8 Particulate and Fibrous Composite Materials 358
  ~6 T. l0 u) G2 i4 o2 e9.8.1 Structure 3587 d9 v+ i7 }' U
9.8.2 Particulate Polymer Matrix Composites 359
6 ?0 S+ j3 s2 H9.8.3 Fibrous Polymer Matrix Composites 361
5 T6 ]* S1 v1 V9.8.4 Metal–Matrix Composites 362
6 [" S( V3 p7 n" z8 k0 F9.9 Cellular Solids 363
# G# x  E' j. w% r  y9.10 Piezoelectric Composites 3665 \7 u; `# ?, O3 G0 q
9.11 Dispersion of Waves in Composites 366
. V' U3 a9 n9 C2 J& t5 d9.12 Summary 367
0 F" U( F4 b3 }' H& l; p- s- j9.13 Examples 367
9 p" P7 _7 {3 k, p  Z, q. Y9.14 Problems 370/ h7 A! e( j0 V, a
Bibliography 3707 b# Z9 I2 r2 [6 D, V
$ X1 h! B' r3 |  D; T. o+ O( ]
' u2 z0 d; T2 p7 T

4 b# v& A- j5 ^3 E, I10 Applications and Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 377
' o3 g+ G* ~$ y7 O10.1 Introduction 377- q$ v! t6 ~5 ]( C' U
10.2 A Viscoelastic Earplug: Use of Recovery 377
- ^3 }  P. h( M, m10.3 Creep and Relaxation of Materials and Structures 378
! Z6 K/ i/ y+ y0 p% j# N' ]10.3.1 Concrete 378
6 j& q% ?5 S& t% u10.3.2 Wood 378
7 W( T% L' a/ _9 D! K10.3.3 Power Lines 379
& C, Q/ P( D: `, {# K10.3.4 Glass Sag: Flowing Window Panes 380. L9 g* y% b  p% k* y
10.3.5 Indentation: Road Rutting 380+ H' N% o8 `& \
10.3.6 Leather 3815 @+ Q8 j% X& e, j0 c) ?
10.3.7 Creep-Resistant Alloys and Turbine Blades 3813 L6 F! \6 H7 W4 A
10.3.8 Loosening of Bolts and Screws 382
. x7 a! R4 W% M0 f10.3.9 Computer Disk Drive: Case Study of Relaxation 384  C& m0 S! V# y; f
10.3.10 Earth, Rock, and Ice 385
# x# g* Y, m4 m  ^0 i10.3.11 Solder 386! ?: v" g6 \0 S+ l  G) [8 c: e
10.3.12 Filamentsi nL ight Bulbs and Other Devices 387! E) d( D+ B1 o
10.3.13Tires: Flat-Spotting and Swelling 388. }+ l+ B. F3 `! `! w4 k8 a
10.3.14Cushionsfor Seats and Wheelchairs 388! {# L! _2 }+ g8 ]  M; v+ F4 M
10.3.15 Artificial Joints 389: B8 E+ ?" ^# T& q, J. @  l: s% s
10.3.16 Dental Fillings 3897 i- T1 T* C: m- U
10.3.17 Food Products 389
% X/ y  A: ~- H' B% L( [: \10.3.18 Seals and Gaskets 390
9 G& c0 _( J1 U10.3.19 Relaxationi nM usical Instrument Strings 390
- z1 U" S  u0 ^/ k5 f; X10.3.20 Winding of Tape 391
# I  O4 e" J/ G10.4 Creep and Recovery in Human Tissue 3917 R  S" v1 Z" g: u
10.4.1 Spinal Discs: Height Change 391' |5 N( [4 l  V2 v
10.4.2 The Nose 392
; n- o9 x; ?2 e* P) S9 s10.4.3 Skin 392+ O. O9 v* X; D8 k
10.4.4 The Head 393
3 g# ]! P4 m. I" S, f* A: t3 V10.5 Creep Damage and Creep Rupture 394
3 E* M5 v, Q5 l" s10.5.1 Vajont Slide 394
' F- G) ~# p" W: e10.5.2 Collapse of a Tunnel Segment 394
  {$ I; @) d* ?9 U, K10.6 Vibration Control and Waves 394
: E/ \* W; A) B) z! A2 d& l, Z10.6.1 Analysis of Vibration Transmission 394" {3 F' q3 z' O( Q' `
10.6.2 Resonant (Tuned) Damping 397
9 I- i6 h8 [, D5 B" T10.6.3 Rotating Equipment Vibration 397
- s* a2 B4 L2 @& K/ X10.6.4 Large Structure Vibration: Bridges and Buildings 398
* y1 @6 o0 J) v10.6.5 Damping Layers for Plate and Beam Vibration 3992 b1 j$ I3 J; u1 o6 ?" z
10.6.6 Structural Damping Materials 400
9 J/ _: Y% N8 P: B10.6.7 Piezoelectric Transducers 402
4 l5 s- R$ \" G% a  Q8 D10.6.8 Aircraft Noise and Vibration 402
, a  b& n) i" v- _10.6.9 Solid Fuel Rocket Vibration 404. R7 X7 F( l" J% I) q2 I! g$ Q
10.6.10 Sports Equipment Vibration 404) Q# a* r# n: {5 {1 @6 W
10.6.11 Seat Cushions and Automobiles: Protection of People 404
: r2 c2 e. i0 C' _# g10.6.12 Vibrationi n ScientificI nstruments 406
: }9 u. Z% A2 S' j$ Y6 ?1 J10.6.13 Waves 4065 n8 U/ f" k& O% V
10.7 “Smart” Materials and Structures 407% \' H9 u* ?0 i- `8 A& A( `* m! j
10.7.1 “Smart” Materials 407
; `9 R7 o& q3 I5 S10.7.2 Shape Memory Materials 408
& \8 c- B2 a& F0 H10.7.3 Self-Healing Materials 409/ K! Q* r# U* c5 N: @) A; o
10.7.4 Piezoelectric Solid Damping 409
' O9 C7 m9 j# q4 W10.7.5 Active Vibration Control: “Smart” Structures 409' v# G2 J9 i' L: m2 S; I5 Y
10.8 Rolling Friction 409) F) _2 _* P1 a0 |1 B) T8 ^
10.8.1 Rolling Analysis 410
. X  u7 U0 l/ }+ I: R7 R10.8.2 Rolling of Tires 411  d4 C, e( c1 P  U* R) p
10.9 Uses of Low-Loss Materials 412# A$ \0 ]9 C+ r0 H- N- {1 d/ V
10.9.1 Timepieces 4125 o( k0 H3 v1 O. c  q' l% K
10.9.2 Frequency Stabilization and Control 4130 }0 c3 L* p2 z. z) t
10.9.3 Gravitational Measurements 413
/ [4 R2 P* v! B; W, b* u3 U10.9.4 Nanoscale Resonators 414
3 E+ e! A/ l8 L; L# S9 c; g10.10 Impulses, Rebound, and Impact Absorption 414: f5 h! ?/ @* w% @
10.10.1 Rationale 414
) D/ L* x- ]+ W  I10.10.2 Analysis 415
$ u+ p3 T( {- P+ k1 n2 V( Y. L10.10.3 Bumpers and Pads 418
' D' k- e3 A2 R' _* u' T) l, g10.10.4 Shoe Insoles, Athletic Tracks, and Glove Liners 419
* `1 g! E8 p! S- y8 [6 T10.10.5 Toughness of Materials 419
8 P- Y$ ~2 V, H10.10.6 Tissue Viscoelasticity in Medical Diagnosis 420* `" g4 {! ]8 m4 D
10.11Rebound of a Ball 421
6 H/ C5 _' G; F10.11.1 Analysis 421
7 x6 N7 c, E3 j7 s6 F& u7 t, b10.11.2 Applications in Sports 422
! V, B8 a: p& t8 i5 o  p: [10.12 Applications of Soft Materials 424" C% V; J6 |, q4 R
10.12.1 Viscoelastic Gels in Surgery 4247 n; P! {9 O& }  W, Z) D- m. `) D2 K
10.12.2 Hand Strength Exerciser 424
  B! \  ]  _' V% w+ o* D* W10.12.3 Viscoelastic Toys 424
$ ~9 M) w3 V* O  z5 W; R' B% h10.12.4 No-Slip Flooring, Mats, and Shoe Soles 425; V6 B/ j, L2 W- J3 c: O% ~
10.13 Applications Involving Thermoviscoelasticity 425
" n, v2 d' v. t2 R/ p# e: F; I1 ^( N3 j3 V10.14 Satellite Dynamics and Stability 426
. B: W5 t- D2 u9 y" i10.15 Summary 4281 G8 f- n& `3 S; C' B5 n6 U! c
10.16 Examples 429
& X# \" [% V8 F! Q& H' Y! d  z3 {10.17 Problems 431" B' N! x9 u2 c3 T& H: r
Bibliography 4317 [9 d+ ^9 n- H# ]

  a0 e1 q4 ~  i) P+ {1 h3 W4 U, M3 E* U2 Y( K7 u  Y
, |& S! b! A5 C3 D
A: Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441% d( N& p9 q3 K7 n0 a& S! G
A.1 Mathematical Preliminaries 441
6 o# @. W- e+ Y: D. Q4 Z' XA.1.1 Introduction 441
4 W  r6 t. B% v! w- g: hA.1.2 Functionals and Distributions 441- U+ o8 i( C9 O2 Z* p, ?
A.1.3 Heaviside Unit Step Function 442
1 O3 o) H; u, T6 k1 c5 b. BA.1.4 Dirac Delta 442* h- t7 S, V+ b4 g$ q- ^
A.1.5 Doublet 443
+ X! b2 m% }0 M3 a- i8 H2 WA.1.6 Gamma Function 445# D  G4 S. _( t  t3 p! I
A.1.7 Liebnitz Rule 445; t* A$ p- P8 p% }+ G. J6 N: `+ l
A.2 Transforms 445
' q# x0 b) q5 D: d/ w' HA.2.1 Laplace Transform 446
9 W  m0 B" t, Z( W" ZA.2.2 Fourier Transform 446
& H3 b( Y8 k+ i( T. Q/ Z9 k7 rA.2.3 Hartley Transform 447
1 I: j  R7 ~! M. ZA.2.4 Hilbert Transform 447
. j* W7 {& A/ O: F- v" u. v5 c4 xA.3 Laplace Transform Properties 448
  A* e8 l; o$ R4 M5 V* W6 vA.4 Convolutions 4499 Y5 [* }1 Y+ w% Y: e% O6 _6 P
A.5 Interrelations in Elasticity Theory 4513 T- G6 x! O$ u6 F9 `
A.6 Other Works on Viscoelasticity 4518 x; W$ x& i1 T+ t8 ^
Bibliography 4529 {0 U8 x& `3 P7 m6 @

$ G4 ~; A% ^8 N& P  a
  y4 O+ C5 C# }# s0 JB: Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4552 f8 p4 u  k$ C0 Y- w7 E
B.1 Principal Symbols 455
) W; D8 N5 w5 W0 |$ {" YIndex 457
, v" `* M, Y& f6 }9 t) s$ e" ^# M( ^' K! C

  t" A9 ?: g' S6 E




歡迎光臨 機(jī)械社區(qū) (http://www.whclglass.com.cn/) Powered by Discuz! X3.5