|
本帖最后由 陳小黑 于 2015-1-9 22:37 編輯
, g1 X' r1 w; h8 }7 [' P$ b# H" d" V: Q8 X+ V9 w9 s, E
Viscoelastic Materials Roderic Lakes 2009 Part 1-2.rar
(4.42 MB, 下載次數: 6)
2015-1-9 22:29 上傳
點擊文件名下載附件
第一部分 下載積分: 威望 -10 點
6 R: V& b2 S6 r* O
6 n$ F/ b' y: L% j3 n
Viscoelastic Materials Roderic Lakes 2009 Part 2-2.rar
(3.39 MB, 下載次數: 6)
2015-1-9 22:33 上傳
點擊文件名下載附件
第二部分 下載積分: 威望 -10 點
' n! K. J# }( ]# S; b' V* L5 M9 @! R0 X! v; p& ~+ g* J1 o
目錄/ U- g2 C. O$ ^6 o6 X
8 s* V; p' x5 }; j" r; gContents
4 K$ B/ G3 D9 m/ S) b! }6 X+ k+ A+ _) ~! x
Preface page xvii8 D. o: I: [3 [
1 Introduction: Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
+ i( |# [, p/ |* U; s" c1.1 Viscoelastic Phenomena 1
3 u0 g' |; N( K: o* c) [! ^1.2 Motivations for Studying Viscoelasticity 3
: O1 N8 ?% j- i2 o5 [) w1.3 Transient Properties: Creep and Relaxation 33 t9 D) w6 g. N6 \( o
1.3.1 Viscoelastic Functions J (t), E(t) 3
* U4 c c$ X! M9 t1 J1.3.2 Solids and Liquids 7! |0 p0 P$ w9 h9 W! D
1.4 Dynamic Response to Sinusoidal Load: E∗, tanδ 8+ M/ S3 R/ q( G- R/ D- Z% o
1.5 Demonstration of Viscoelastic Behavior 10
+ p+ D- }( ~0 F3 q7 k! E1.6 Historical Aspects 10: J- N) j. J/ M3 l/ B
1.7 Summary 11( d+ }7 r/ F/ _+ I* b, P6 I
1.8 Examples 11
7 i7 J$ Y# K3 |1.9 Problems 12
) U q$ F. x8 A* ` d [5 aBibliography 12
" b; D. z- v4 |' V E: T1 a8 b$ E( Q, f( l: K# L2 y5 P1 m) i$ G
/ E! r) p5 q' L& i( _ a) q$ [" u. V+ [' T, R" k
U9 B9 A( w9 d
) G& [2 X9 h8 {0 c5 L, ?
% o) h9 _: l! M; j$ S1 s2 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14) D; ^7 e, P. J- Z
2.1 Introduction 14/ w4 G3 I1 f7 V2 C' ? L- O8 g/ M
2.2 Prediction of the Response of Linearly Viscoelastic Materials 14
$ p- B3 ]* H/ D7 E1 D$ ^+ H2.2.1 Prediction of Recovery from Relaxation E(t) 14
- U$ o9 z/ w3 z2 ~$ I1 D. n2.2.2 Prediction of Response to Arbitrary Strain History 156 M$ F5 F' ~* s, c" @8 |4 C8 i
2.3 Restrictions on the Viscoelastic Functions 17
6 G( P# t. I4 C& U. U2.3.1 Roles of Energy and Passivity 17
$ U0 I4 d8 }% \3 x* I2.3.2 Fading Memory 18
5 E1 G# H% S9 L( m2.4 Relation between Creep and Relaxation 19
' L, j6 K$ N5 t' z& N! e; H2.4.1 Analysis by Laplace Transforms: J (t) ↔ E(t) 19- N, m& E% `! I. W) l
2.4.2 Analysis by Direct Construction: J (t) ↔ E(t) 20. C8 z- {& s9 X$ f
2.5 Stress versus Strain for Constant Strain Rate 20
; p. J" }6 C* ?8 A; Q9 z( _5 y2.6 Particular Creep and Relaxation Functions 219 E9 h6 ?2 ^9 ?& u
2.6.1 Exponentials and Mechanical Models 214 J! m2 z* b/ C" y
2.6.2 Exponentials and Internal Causal Variables 26% p. n6 Y& J8 R2 E' g( k
2.6.3 Fractional Derivatives 27' X0 {2 a5 M9 R1 S( V
2.6.4 Power-Law Behavior 28
' y- f! [* Y! n4 b. X& U2.6.5 Stretched Exponential 29
7 V; M9 H C& G* Q0 _! ?2.6.6 Logarithmic Creep; Kuhn Model 293 H/ o7 J0 a( `* a {# ?% s
2.6.7 Distinguishing among Viscoelastic Functions 30
+ Q7 \1 J4 f9 `7 X2 G0 }2.7 Effect of Temperature 300 S3 h5 T9 i# f$ |! d8 o& Y. A
2.8 Three-Dimensional Linear Constitutive Equation 33
/ L. K& |" o- k; ]; E5 H2.9 Aging Materials 35! O: k5 l9 w, n
2.10 Dielectric and Other Forms of Relaxation 35
& r5 s, K I1 j; D* j2.11 Adaptive and “Smart” Materials 36
. P. A* F# U' l+ [! Y9 x$ g+ S$ P2.12 Effect of Nonlinearity 37) \$ y# M( J- v! m: q
2.12.1 Constitutive Equations 37
0 I x% A/ p7 N h# o2.12.2 Creep–Relaxation Interrelation: Nonlinear 40& r- \; q6 t! o8 c+ G! `
2.13 Summary 43
2 M0 N0 A G+ [) A+ t0 v( M7 Z2.14 Examples 43! U" a7 R- M9 x, V; K" m% N
2.15 Problems 51+ C1 x. x7 F$ `! {" U O
Bibliography 526 ?$ O( D1 f) P I! _
; w# g4 m; P4 ~# v! z. k: e' Y
9 B- X& r, n- M& b7 K% b. j& r4 v ^" C; }: ^
* j8 n" [( w( o6 i. \
3 Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55& Y5 S! E i2 X& X0 {
3.1 Introduction and Rationale 55* L5 O& A, V% T) h, C' ^# k
3.2 The Linear Dynamic Response Functions E∗, tanδ 56
8 l. `/ ]% O F7 H; m3.2.1 Response to Sinusoidal Input 57
: m! q8 d. S' x3.2.2 Dynamic Stress–Strain Relation 596 p5 P' l3 k. ~' d
3.2.3 Standard Linear Solid 62
: j$ A" H- n; B0 l' w+ M+ o4 Q* h- c3.3 Kramers–Kronig Relations 63
" u0 y5 M5 X' p2 D* ~3.4 Energy Storage and Dissipation 65; r+ j& f6 v$ Y3 O. u
3.5 Resonance of Structural Members 67
+ @4 t9 T: A1 J# `3.5.1 Resonance, Lumped System 67
7 }3 L4 G9 D: F" e4 b% m; V5 \3.5.2 Resonance, Distributed System 71& T$ c' w; w$ p% v
3.6 Decay of Resonant Vibration 74
! O/ ~" h2 ~, Y' F, L3.7 Wave Propagation and Attenuation 77
4 u; J! h8 q0 ^3 ]3.8 Measures of Damping 79
2 b4 j0 ^( Y# w) {8 g7 z; @3.9 Nonlinear Materials 79, i! h+ K$ _0 }
3.10 Summary 817 M4 P# Q1 ?( [" q# Q
3.11 Examples 81+ d+ M$ D2 U @; A8 p
3.12 Problems 885 ?/ v7 V/ j3 B2 b2 Y
Bibliography 89
0 ^' W& P; Z5 P$ J1 K0 T: E8 \6 G0 k4 ]7 }, U
$ n, _6 L- q) v1 J* b, q
( Y# Y( r: |* q" ?4 Conceptual Structure of Linear Viscoelasticity . . . . . . . . . . . . . . . 916 I& n, Q5 m8 |: d/ S
4.1 Introduction 91
7 u/ `/ x( v5 N! \4.2 Spectra in Linear Viscoelasticity 921 [ {' F" [; O
4.2.1 Definitions H(τ ), L(τ ) and Exact Interrelations 92; `* j, D! p; U$ r1 q
4.2.2 Particular Spectra 93
6 q3 { i( |" \+ W; L3 I4.3 Approximate Interrelations of Viscoelastic Functions 95% z8 P$ G: ^2 P K6 A i, x5 H
4.3.1 Interrelations Involving the Spectra 95* C. q; G. g7 t
4.3.2 Interrelations Involving Measurable Functions 98, ]" T" T3 l* G, q! @5 Q+ z( t4 D
4.3.3 Summary, Approximate Relations 101
' k7 o4 M+ P6 Q! E7 P# w. O5 \4.4 Conceptual Organization of the Viscoelastic Functions 101
& B' e2 C8 y% i' g2 S* _4.5 Summary 104
# I" q; Y0 u* R' |4.6 Examples 104& q p2 V K: \, h. C
4.7 Problems 109
5 O3 ? [( `: P- d# a6 qBibliography 109
, f- u" D; K9 u$ x& Z4 ]8 S9 o& n$ w M4 {2 j3 Q( k u
[0 S5 Z) t3 F4 J. Y6 J& e" T
9 }5 O. h; R( s+ m) Q; c \+ S* {5 Viscoelastic Stress and Deformation Analysis . . . . . . . . . . . . . . . 111
4 c! f& N$ m6 V5.1 Introduction 111+ y0 t8 p3 x4 E# b. E
5.2 Three-Dimensional Constitutive Equation 111
2 m) \; J J0 u" D* U, [8 g5.3 Pure Bending by Direct Construction 112
( p5 y8 X: I# r! r* k# ^" r5.4 Correspondence Principle 114
, o- Q1 Y# @9 G; l1 m8 U5.5 Pure Bending by Correspondence 116
4 k; d {# o. l5.6 Correspondence Principle in Three Dimensions 116 z* n$ b% f1 J3 ^$ K( ?
5.6.1 Constitutive Equations 116: k0 z% j) f$ y1 s) Y
5.6.2 Rigid Indenter on a Semi-Infinite Solid 117
3 {' p" I4 I, Y. a7 {- M5.6.3 Viscoelastic Rod Held at Constant Extension 119
o; d8 t5 w* D1 W: Q) m- K5.6.4 Stress Concentration 119* J9 |) L: s. @- m0 p" ]7 e0 z
5.6.5 Saint Venant’s Principle 120) {0 ^! f, l) w' k" W
5.7 Poisson’s Ratio ν(t) 121
3 P( s1 Z7 x7 Y6 v6 z6 G5.7.1 Relaxation in Tension 121+ H7 W( Y7 X4 c
5.7.2 Creep in Tension 1232 g5 n1 ]$ v9 K* H! n3 D' }6 `
5.8 Dynamic Problems: Effects of Inertia 124: K# m: g. m7 F! n3 R- r$ D
5.8.1 Longitudinal Vibration and Waves in a Rod 124
% ^8 ~ s, D4 J/ k+ b5.8.2 Torsional Waves and Vibration in a Rod 125
' T$ V2 t0 Q& O' V) O- y5.8.3 Bending Waves and Vibration 128
m. E5 N$ m. t5 A+ Q5.8.4 Waves in Three Dimensions 129
# @0 L ]3 P: e7 C4 t" P$ Z8 R5.9 Noncorrespondence Problems 131
2 G! y3 |: P6 {' N5 \5.9.1 Solution by Direct Construction: Example 131
, @0 Y, a( m( V$ K8 u5.9.2 A Generalized Correspondence Principle 132
; F3 q! O! q9 u0 g' L5.9.3 Contact Problems 132
6 y& G, \- E: T5.10 Bending in Nonlinear Viscoelasticity 133' O1 H4 p( P; W0 S/ y
5.11 Summary 134$ ]/ x$ F. u0 e7 S
5.12 Examples 134
. C" l& ]5 c6 f4 g k# t5.13 Problems 142
! ^: R1 N8 u$ L" b1 _8 s; GBibliography 142
' t% i" e1 l7 M: Y/ Y2 R
. A, D! J! X/ h' h" {" s$ L, W' T/ Z# k- q' p
^; t; ^ g! C U
6 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145* F1 ~8 O2 L* R& c1 R
6.1 Introduction and General Requirements 145
% c' I8 u6 R3 s4 ^& U9 N& o6.2 Creep 146
# Z f% S/ ?( Z" K6.2.1 Creep: Simple Methods to Obtain J (t) 146; m: K+ q& G3 ?' `1 E% K% T
6.2.2 Effect of Risetime in Transient Tests 146' X8 Y# x" V/ }. w
6.2.3 Creep in Anisotropic Media 148! ^6 ?% D& o x+ [/ N
6.2.4 Creep in Nonlinear Media 148
( B& j+ m% `& |6.3 Inference of Moduli 150
, l: z$ ~4 U+ D1 c- E4 }6.3.1 Use of Analytical Solutions 1503 |3 A& a4 z& P" a# P/ O) x
6.3.2 Compression of a Block 151( l. ^9 _9 i; H' ]# P3 A2 L+ I
6.4 Displacement and Strain Measurement 152
% I8 } ~0 a b: R" U$ Q) ^* Z% o4 W6.5 Force Measurement 1567 M$ h, x# c5 f9 ]3 f- M
6.6 Load Application 157) A% M: O) t/ `- O, S% N. ^3 q; g
6.7 Environmental Control 157
1 o$ }3 X% _" C/ Q6.8 Subresonant Dynamic Methods 1584 [" Z9 G+ ~% o) F. u; n1 M
6.8.1 Phase Determination 158
, A3 b& K" ~* [0 R6.8.2 Nonlinear Materials 160
( f5 A6 f! R5 @* w& ~. W, I6.8.3 Rebound Test 161! m8 E$ w# Z" P- O7 B( I
6.9 Resonance Methods 1615 Z7 f! [& [5 p, n6 @5 e
6.9.1 General Principles 161
# q2 p2 M5 P0 |- u( Q8 s7 P6.9.2 Particular Resonance Methods 163
& `4 t9 ]7 w6 I* Y& \+ I, H# L6.9.3 Methods for Low-Loss or High-Loss Materials 1661 V2 `. f/ l# _- ?* H3 m9 [
6.9.4 Resonant Ultrasound Spectroscopy 1684 K5 E+ y" Q$ R% v7 G" A
6.10 Achieving a Wide Range of Time or Frequency 1719 d- R1 \8 T* s4 M3 `* W
6.10.1 Rationale 171
0 k2 S) @3 S" G0 v- j2 W6.10.2 Multiple Instruments and Long Creep 172
5 E. m) \. x- |6 x3 ~+ H6.10.3 Time–Temperature Superposition 172* w. G2 K$ k% c5 T# q
6.11 Test Instruments for Viscoelasticity 173/ I# h8 x( E* K. c: u0 }2 S
6.11.1 Servohydraulic Test Machines 1734 w4 {5 s7 ^, I% x3 Y7 g/ R
6.11.2A Relaxation Instrument 174
$ d5 c, ]( c$ i7 n% k6.11.3 Driven Torsion Pendulum Devices 1741 [8 A' N5 i- P7 [+ {
6.11.4 Commercial Viscoelastic Instrumentation 178
3 s: m5 e6 g* s T+ b3 i6.11.5 Instruments for a Wide Range of Time and Frequency 179/ y' g6 F5 V& P4 q* }+ v
6.11.6 Fluctuation–Dissipation Relation 182: s) C8 D. p- \$ _9 F5 R) l+ V
6.11.7 Mapping Properties by Indentation 183
( I2 k) i* h- X2 ~8 ?' B- |+ i, l6.12 Wave Methods 184
8 Y+ A3 M E8 p8 f6.13 Summary 188& K1 F9 n# b6 Q' K% ^
6.14 Examples 188
4 k/ z0 \) F. M( N1 a6.15 Problems 200
7 ~( ~4 O; E3 s1 \/ y# ~5 HBibliography 201
& ?: K6 J$ K' g s9 p0 p0 G! k C* W
1 Z, v! W; I' ~8 k$ `
) D/ Z* c7 \( Y& X) @: P# o* ?7 Viscoelastic Properties of Materials . . . . . . . . . . . . . . . . . . . . . 207+ o7 o% k* Z4 @ M7 C3 G6 C% _
7.1 Introduction 2071 r4 N9 ~0 Y5 h! U8 S) F# l
7.1.1 Rationale 207
O; {, w1 t, G* P2 _; g4 Q+ x2 x7.1.2 Overview: Some Common Materials 207
1 T3 H; E/ x( ^5 K: N3 w) V& u7 G7.2 Polymers 208
; I! q4 V4 p' S* m; p, B* |' K% y7.2.1 Shear and Extension in Amorphous Polymers 208
1 l3 ]& ^/ x1 a P/ f" u7.2.2 Bulk Relaxation in Amorphous Polymers 212
! q* q0 z0 A" j- M* b8 p7.2.3 Crystalline Polymers 213
& u$ u# c6 h6 c) C6 h- C7.2.4 Aging and other Relaxations 214
% C- m$ i. g! q- ?7.2.5 Piezoelectric Polymers 214 ?( K; x7 ?% N- V' \8 Z+ P) W
7.2.6 Asphalt 214$ D! m3 a* {. v9 c* s0 W
7.3 Metals 2159 V& X7 r8 m3 T/ Z7 n" n
7.3.1 Linear Regime of Metals 215
2 D% D/ J: o R d7.3.2 Nonlinear Regime of Metals 217! j$ \: U) U1 H
7.3.3 High-Damping Metals and Alloys 219
7 S, w8 C3 p: g8 r# H0 j" L7.3.4 Creep-Resistant Alloys 224
/ x# d/ @, A* C1 x* C# \& j7.3.5 Semiconductors and Amorphous Elements 225
7 K! x& x" I( g# F7.3.6 Semiconductors and Acoustic Amplification 226! n2 ]- J) y/ d
7.3.7 Nanoscale Properties 226+ D7 m8 M7 H6 D% x) ]% K
7.4 Ceramics 227- m1 h, N5 w3 o- S0 E. {' d2 Y
7.4.1 Rocks 2273 J# G+ k g9 x8 Q! P
7.4.2 Concrete 2293 P. F# D9 _% ]0 w& z9 i
7.4.3 Inorganic Glassy Materials 231
. ]1 Q! w. }( E0 N2 l! \7.4.4 Ice 231
, b. b& L7 w; g* k9 I7.4.5 Piezoelectric Ceramics 232
: x. b* ^/ \ p3 m7 V7.5 Biological Composite Materials 233
; q$ Z2 J3 X i% C" {' R( U7.5.1 Constitutive Equations 2345 k/ L/ V0 B7 \3 X$ k8 x
7.5.2 Hard Tissue: Bone 234
4 T) M/ P, R8 ?5 x& u+ y# U7.5.3 Collagen, Elastin, Proteoglycans 236
# V N( Q+ Y6 |8 l9 r7.5.4 Ligament and Tendon 237
4 r5 Q" f. p; K' Q5 Z, F7.5.5 Muscle 240+ [9 v2 r2 a3 h: ]& a) `
7.5.6 Fat 243) X0 T3 u7 ^% r1 p
7.5.7 Brain 243
" H* m! A$ t$ e* D7.5.8 Vocal Folds 244
0 i: L8 x7 ~8 [$ A3 q0 L; u7.5.9 Cartilage and Joints 244' Y6 B" |. Y7 v3 J4 ]; J
7.5.10 Kidney and Liver 246 l# | K6 x Q" x& g# `
7.5.11 Uterus and Cervix 2461 S* _* w6 g! C& l
7.5.12 Arteries 2476 A; y; b4 C7 u. f+ z8 ^
7.5.13 Lung 248
s% n9 s/ ^3 i( R7.5.14 The Ear 248
$ N6 A" a+ Q; J5 w) x e7.5.15 The Eye 249
8 V# ]- b2 K) g+ c; ^2 F& T7.5.16 Tissue Comparison 251
& {; A8 o8 I0 m" m7.5.17 Plant Seeds 252
. C0 g, @# i! M% X9 h+ {- g7.5.18 Wood 252
. z: z; \& b/ [. c) b+ C2 D7.5.19 Soft Plant Tissue: Apple, Potato 253
0 v% G' E, X2 y5 k4 y7 O1 i! a, E5 Y7.6 Common Aspects 2536 G+ b3 D2 c9 F4 d) F
7.6.1 Temperature Dependence 253, e# m9 ?& u* m* S$ n* `& X5 b2 R$ d
7.6.2 High-Temperature Background 254
! G! n/ r" f7 X4 j7.6.3 Negative Damping and Acoustic Emission 255
9 f( M4 h" m- c/ ?# k# l7.7 Summary 2551 y5 T$ B. c& M$ m4 S
7.8 Examples 255
- y% ^" d! H5 d5 j( _7.9 Problems 2565 I+ j7 h, m' Z( _$ p
Bibliography 257
8 N! g; H1 G) ?6 Q: K# }% Y
( D4 B. i$ o& _! Y
R4 S2 k" `4 C5 Z6 k3 @, `% x2 Y8 A$ i6 }: y7 f0 \7 e9 g" x5 i. C& ~
8 Causal Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
8 {% t% W2 \) ]+ D& U& ^8.1 Introduction 271) O# g# t) ~9 i8 ?" y7 |+ d/ c+ ?
8.1.1 Rationale 2712 ]6 v# _: r3 i% P: m, `2 W
8.1.2 Survey of Viscoelastic Mechanisms 271
y7 o* `( h9 L, e8 r! _+ D8.1.3 Coupled Fields 2731 k3 i ~3 T4 [3 L
8.2 Thermoelastic Relaxation 2743 F, `/ q# M& i8 c w' E
8.2.1 Thermoelasticity in One Dimension 2748 d; q' g- f. _, h* u4 m! k, C
8.2.2 Thermoelasticity in Three Dimensions 275
& w2 c: d9 E6 U3 B3 E+ I( y8.2.3 Thermoelastic Relaxation Kinetics 276! g% j# `- u# F! |
8.2.4 Heterogeneity and Thermoelastic Damping 278
0 P( c$ }8 z# b" j9 v( ?! o& ^8.2.5 Material Properties and Thermoelastic Damping 2809 T2 K7 }1 l1 J" s% C; N
8.3 Relaxation by Stress-Induced Fluid Motion 280! h" C1 J: B( \% G6 Q
8.3.1 Fluid Motion in One Dimension 2800 n- D/ Z1 C4 C3 D% A. [
8.3.2 Biot Theory: Fluid Motion in Three Dimensions 281, R) _0 P( z( I( O1 g8 w
8.4 Relaxation by Molecular Rearrangement 286/ G3 a5 e3 j& X
8.4.1 Glassy Region 286+ \+ `2 x$ Y# s
8.4.2 Transition Region 287
1 ^; G8 Z; I7 U4 D% L+ [' P( D- y; W* ]8.4.3 Rubbery Behavior 289. L# N) t: X0 l( d2 O$ e' T
8.4.4 Crystalline Polymers 291
2 ~3 c( n8 C0 m h8.4.5 Biological Macromolecules 292
: u5 p; f; N# L- H8.4.6 Polymers and Metals 292
6 L7 u! ]" Z( u! J, k* _7 w; G2 D7 w9 u4 A8.5 Relaxation by Interface Motion 2925 i" X6 x! W) ^( @. |4 Z
8.5.1 Grain Boundary Slip in Metals 292
1 E: M8 R5 m1 j4 N3 G8.5.2 Interface Motion in Composites 294
9 C W; y' k# f7 ~8.5.3 Structural Interface Motion 2949 G: E% @( |9 W: N. P
8.6 Relaxation Processes in Crystalline Materials 294' {- [; ~2 i5 D% e
8.6.1 Snoek Relaxation: Interstitial Atoms 294% U; C& ^+ \) [ ]5 E3 R
8.6.2 Zener Relaxation in Alloys: Pairs of Atoms 298
5 A! S6 b/ n: Y3 C0 C7 k8.6.3 Gorsky Relaxation 299 s% P) M1 Q+ O& b( E* ]
8.6.4 Granato–L ¨ ucke Relaxation: Dislocations 300
! ?' t [2 x" v9 A( G* h/ ]8.6.5 Bordoni Relaxation: Dislocation Kinks 303
% g* {" m: v; ?# Y0 F+ m8.6.6 Relaxation Due to Phase Transformations 3059 z0 `9 z2 M$ E. T7 B
8.6.7 High-Temperature Background 314
& \- d8 H4 H1 _: t8.6.8 Nonremovable Relaxations 315
* Z C5 N* H, F$ }! f( v6 s8.6.9 Damping Due to Wave Scattering 316
1 f/ k8 H1 ?% i5 X) f8.7 Magnetic and Piezoelectric Materials 316
& Z h. x( g. f a) R$ [4 b8.7.1 Relaxation in Magnetic Media 316+ ]6 w O, R8 v
8.7.2 Relaxation in Piezoelectric Materials 318
+ ]9 i8 i' \. y" A, J8.8 Nonexponential Relaxation 322
3 k$ c% I6 r" b c8.9 Concepts for Material Design 323
- D5 t u0 Y$ ? x8.9.1 Multiple Causes: Deformation Mechanism Maps 323
, I f- m& X; o- _8.9.2 Damping Mechanisms in High-Loss Alloys 326
8 h* [: \& W; e8.9.3 Creep Mechanisms in Creep-Resistant Alloys 326% }8 @/ w6 a) a: [
8.10 Relaxation at Very Long Times 327
4 d. R6 ]1 v* g0 H8.11 Summary 327& i/ s3 X& d J0 {; \
8.12 Examples 328
P) o' Q% s& ?$ a8.13 Problems and Questions 332; J: i4 @2 i& R4 D, L5 |
Bibliography 332' S5 [1 P) a( Y" C
8 P7 |& e+ I. I, a, K( ?, J1 x
4 U8 H6 F% C$ d2 v5 U# T) A, u; @7 W+ b) j8 _8 E- s1 z" q
9 Viscoelastic Composite Materials . . . . . . . . . . . . . . . . . . . . . . . 341/ h( y# L% r4 W
9.1 Introduction 341
1 Z4 |; o7 Y8 {5 `( u& V' y. A9.2 Composite Structures and Properties 341# g$ t; I$ I6 J7 m' y- o" |5 F
9.2.1 Ideal Structures 341
1 `& I5 t9 ?' w. R9.2.2 Anisotropy due to Structure 342. t3 I3 X8 N2 q: c
9.3 Prediction of Elastic and Viscoelastic Properties 344
6 w Y% L0 l3 M9.3.1 Basic Structures: Correspondence Solutions 344, @5 |& |8 w$ n% S! M# X
9.3.2 Voigt Composite 345" \9 d* E4 ~2 ]' e# B% I
9.3.3 Reuss Composite 345
5 a5 V+ N+ l, b- u* T9.3.4 Hashin–Shtrikman Composite 346# Q. C- A- y2 m$ g
9.3.5 Spherical Particulate Inclusions 347
. u, E/ l3 M3 F: n+ ^9.3.6 Fiber Inclusions 349, U) k& y* Z. J# O' R0 W# `/ k- r% P
9.3.7 Platelet Inclusions 349
! l7 K, G, M. E# O' @9.3.8 Stiffness-Loss Maps 350
. Q/ g! h8 s- r/ w1 g! `9.4 Bounds on the Viscoelastic Properties 353
: H; d3 B, _8 N* Y5 P9.5 Extremal Composites 354- ?9 F5 {2 S% S$ V4 c. Z( l3 i, k
9.6 Biological Composite Materials 3565 u" ]! {5 M w' b" S9 ?
9.7 Poisson’s Ratio of Viscoelastic Composites 3573 Z" A4 `3 k+ z' V; z
9.8 Particulate and Fibrous Composite Materials 358
9 Z x& r0 O$ C, G+ O$ _3 n9.8.1 Structure 358! \& }; V0 [, \1 \$ U$ }- x
9.8.2 Particulate Polymer Matrix Composites 3592 Y/ w) q# C! o
9.8.3 Fibrous Polymer Matrix Composites 3612 I) ]0 v4 Q* f) x/ x0 c9 g
9.8.4 Metal–Matrix Composites 362
/ [- o9 h7 h5 l; c8 e, Z9.9 Cellular Solids 363
, S! h7 p% b2 b9.10 Piezoelectric Composites 366 H6 z8 |/ m3 d P3 v0 W- z6 d
9.11 Dispersion of Waves in Composites 366
3 ~! N# H+ C# A M, p9.12 Summary 367) W( z" j; M& B
9.13 Examples 3679 R' _" a+ T0 J/ X+ L( {* `
9.14 Problems 370, y4 r( @5 }& g" i' h/ C
Bibliography 370
m( J0 U9 P$ k6 n! z$ n2 w5 }& ?. p; [/ W& w/ P
# f7 D) U+ v: f6 ~; Y" u! W
* S7 k) s% H7 D: B
10 Applications and Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 377* n2 q. c( `; U# v' R. ~6 O9 E7 z
10.1 Introduction 377
; e% e1 z6 V3 w0 E10.2 A Viscoelastic Earplug: Use of Recovery 377
5 T& |* i$ ^7 J& k) r9 G10.3 Creep and Relaxation of Materials and Structures 3780 N8 R* S: v; Q
10.3.1 Concrete 378( s! S2 h" a1 h' V5 ~0 y ^
10.3.2 Wood 378
: a- W# Z1 Q% k10.3.3 Power Lines 379
: c3 ], W- a8 _) P" G; g9 J! W10.3.4 Glass Sag: Flowing Window Panes 380( f. n8 I" B0 v- o+ G) l! T% P
10.3.5 Indentation: Road Rutting 380
4 u& G; A3 G- f4 m8 ?7 @' h% [0 B10.3.6 Leather 381
" ?$ R B/ M! ?' ^8 Q8 A10.3.7 Creep-Resistant Alloys and Turbine Blades 381. J2 O* y+ F, l) t1 K7 T: Y
10.3.8 Loosening of Bolts and Screws 382) }& N# P8 E( z3 F3 Q: F2 r
10.3.9 Computer Disk Drive: Case Study of Relaxation 384
- ?2 v0 |, y0 n5 t) O4 N$ Z$ D10.3.10 Earth, Rock, and Ice 385, n6 o$ y: w. U4 C7 a9 K
10.3.11 Solder 386- P$ G% e% _( p }+ M
10.3.12 Filamentsi nL ight Bulbs and Other Devices 387. J. y; Y: E6 G& O6 n
10.3.13Tires: Flat-Spotting and Swelling 388
& E0 }1 F: a6 z) H* d x/ U0 a0 Z: ^10.3.14Cushionsfor Seats and Wheelchairs 3888 j2 q6 i9 |+ u7 ^' H* j7 _5 A$ @
10.3.15 Artificial Joints 389/ C7 ]* ~- X! r) b! y, B9 d
10.3.16 Dental Fillings 389
; `- m2 }( i1 p4 T, F+ ~5 ^10.3.17 Food Products 389
4 [1 ?9 B$ ]5 {$ Q. H" J& k10.3.18 Seals and Gaskets 390
; U, [0 q8 g4 ` N9 @10.3.19 Relaxationi nM usical Instrument Strings 390+ r5 ?; {4 o' N. q! m/ L4 f
10.3.20 Winding of Tape 391$ C- X* ]& e8 {. b. v
10.4 Creep and Recovery in Human Tissue 391
+ Z) K3 c+ u+ U z' M10.4.1 Spinal Discs: Height Change 391
9 w$ Q+ h& g2 ]# O- O8 o; e6 [. N10.4.2 The Nose 392
2 S2 Q% U! G) s; v2 |8 P) r10.4.3 Skin 392* S5 j8 q- M7 C, [3 a. ]
10.4.4 The Head 3937 h4 W% R2 z; t7 |% S4 I2 ^8 I
10.5 Creep Damage and Creep Rupture 394
3 g5 Z3 J) `: H( w10.5.1 Vajont Slide 3947 W8 C( G' [+ w0 t5 q% q8 E
10.5.2 Collapse of a Tunnel Segment 394! V. S- Q3 L3 {% w1 A3 p% \ z
10.6 Vibration Control and Waves 394# h, l) C' X5 J. f+ k6 L1 x
10.6.1 Analysis of Vibration Transmission 394
, R$ ~1 I- R4 h* A2 s10.6.2 Resonant (Tuned) Damping 397
; N( k! w, N0 l! }4 Z+ B10.6.3 Rotating Equipment Vibration 397
; F0 @/ p5 j, x! j1 L* C" b10.6.4 Large Structure Vibration: Bridges and Buildings 398. V) \8 y3 A3 O
10.6.5 Damping Layers for Plate and Beam Vibration 399. R4 J, m) e5 E! b
10.6.6 Structural Damping Materials 400
& {4 |( @, R. j10.6.7 Piezoelectric Transducers 4021 q& w6 v! Z9 M- U: Y4 y$ [
10.6.8 Aircraft Noise and Vibration 4024 y* c; |8 G( \, |
10.6.9 Solid Fuel Rocket Vibration 404' L9 J/ U: s7 d/ Y6 _/ s7 K: Q
10.6.10 Sports Equipment Vibration 4043 @. p2 w& T/ I5 G. Z
10.6.11 Seat Cushions and Automobiles: Protection of People 404' g s+ y6 S& t8 i
10.6.12 Vibrationi n ScientificI nstruments 406
9 I/ [" h* U4 E4 w0 \5 z; H10.6.13 Waves 406, @7 f( N6 T' T( k
10.7 “Smart” Materials and Structures 4072 \: c. \& S$ }# e% n
10.7.1 “Smart” Materials 4071 _/ Z& `: q% g9 e1 \. h+ b
10.7.2 Shape Memory Materials 4088 p4 T6 g. B8 [7 L$ D. k( F- p
10.7.3 Self-Healing Materials 409
5 A1 g7 `# j4 d, @, [; \! }, y10.7.4 Piezoelectric Solid Damping 4095 P+ t' p/ }, b' T/ A4 ~/ t% Y! |
10.7.5 Active Vibration Control: “Smart” Structures 409! `/ r {2 r7 U7 m/ Y* _; R
10.8 Rolling Friction 409
5 O& o1 c# T9 |/ _) Q10.8.1 Rolling Analysis 410
1 i( l. t8 {7 v6 u( J; X- H/ D10.8.2 Rolling of Tires 411
1 @# V. U+ A6 I: u# h10.9 Uses of Low-Loss Materials 412: A( ~5 K) {& B/ X& J
10.9.1 Timepieces 4126 y/ {2 U( n) v& r
10.9.2 Frequency Stabilization and Control 413' R \5 a+ [, P
10.9.3 Gravitational Measurements 413! F* d) q" @& ^/ ^
10.9.4 Nanoscale Resonators 414. \$ o6 Q7 | I! x: K5 s' x
10.10 Impulses, Rebound, and Impact Absorption 414
' Z U& y8 g& {8 ^3 \10.10.1 Rationale 414' ]( o \5 N( O: t2 Z- @% _
10.10.2 Analysis 415
/ }* [9 N$ X6 g- m) h, X! C$ A10.10.3 Bumpers and Pads 418
2 c$ t0 O4 b/ ~7 L- q" s10.10.4 Shoe Insoles, Athletic Tracks, and Glove Liners 419! n. n7 ~9 d, c; \
10.10.5 Toughness of Materials 419
$ H( l. Y$ @9 \0 R% h10.10.6 Tissue Viscoelasticity in Medical Diagnosis 420
# E2 G4 `, F/ @; n3 S6 \1 B10.11Rebound of a Ball 421) L0 u+ q4 ^" q7 }2 m
10.11.1 Analysis 421; U, I2 Y4 E' R4 F n4 h& y
10.11.2 Applications in Sports 4225 S* [# H: j! U) y0 C
10.12 Applications of Soft Materials 4243 d7 h( i, Z9 G' o
10.12.1 Viscoelastic Gels in Surgery 424
$ [, ?: b; V1 j10.12.2 Hand Strength Exerciser 424
$ v2 @: v: d$ J X10.12.3 Viscoelastic Toys 424
) U3 ^0 j* G$ R" B10.12.4 No-Slip Flooring, Mats, and Shoe Soles 425
+ D+ a1 d8 ~& C" {4 h10.13 Applications Involving Thermoviscoelasticity 425
5 L6 t) P' m+ I10.14 Satellite Dynamics and Stability 426
4 J% \: b! R/ s10.15 Summary 428) G: R! W! s6 o
10.16 Examples 429
9 U6 D, u& e) }2 N2 T# S10.17 Problems 431+ r/ M% {5 W, p5 Y6 `# |
Bibliography 431
. q$ g4 \- g$ z8 |1 F
! `1 { Q. U2 J8 f5 P, i# i/ p0 N' i. i
& i/ t1 M8 @; b/ B! a4 G# ?
H! e* l+ g/ n, _6 V! u: f' `A: Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
+ W. R E0 i% dA.1 Mathematical Preliminaries 441) S0 o# I; |9 v0 w% B$ _
A.1.1 Introduction 441
/ I' |; f/ N0 F2 y/ p% v/ \A.1.2 Functionals and Distributions 441+ u# F: P7 m- d/ Y& w1 u
A.1.3 Heaviside Unit Step Function 442
7 M6 d2 }7 b: W9 j, Y; x9 lA.1.4 Dirac Delta 442
! \& _$ @! r m q" q0 s/ K( w4 p" jA.1.5 Doublet 443
# I# f! k q' {7 p8 V" p4 F* DA.1.6 Gamma Function 4457 V: q# _. y2 \2 B% Y' G; w+ i
A.1.7 Liebnitz Rule 445
5 s& E6 W" a' u8 n5 p, g: \A.2 Transforms 445- f, g0 l+ d5 u' k# L5 y
A.2.1 Laplace Transform 4462 I) t; v" M/ r
A.2.2 Fourier Transform 446
0 A$ q# T* L H. E+ l& SA.2.3 Hartley Transform 447( K) l% G5 d7 n W% ?
A.2.4 Hilbert Transform 447
) j: c* a/ q4 `* P' l6 {A.3 Laplace Transform Properties 448
( n+ U" a' d6 L( MA.4 Convolutions 449
1 e- {& U: u. f/ ]- fA.5 Interrelations in Elasticity Theory 451
( Y5 J1 Z5 @9 [/ C# R9 {. xA.6 Other Works on Viscoelasticity 451
* [8 P. h6 s6 u9 ]2 d: Q PBibliography 452/ V7 J4 J$ Z5 n+ V
& W5 a; f6 y( [8 ]3 I
4 k7 S$ B* @3 y$ lB: Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
0 ? Y' g( D" T" `3 s4 X6 A R3 jB.1 Principal Symbols 4554 g4 y7 C" ]" W8 v
Index 457
0 g1 O* \% O" R4 K, F, U
p1 F5 S5 ?, C( Z" _6 ?+ {7 F8 a3 Z) l% V7 U1 o4 } j' d" O/ ~
|
|